
Cornell University
Autonomous Underwater Vehicle

Spring 2017

Webserver

Semester Review

Noel Picinich (nmp53)

May 13, 2017

Webserver

Contents

1 Abstract 2

2 Goals 3

3 Previous Implementations 3

4 Design: Why React? 4
4.1 Speed . 4
4.2 Modularity . 4
4.3 Scalability . 4

5 Implementation 5
5.1 Components . 5
5.2 Props and State . 5
5.3 Handlers . 5
5.4 Style . 6
5.5 Keyboard Commands . 6

6 Results 7

7 Future Improvements 8
7.1 Additional Features . 8
7.2 Suggested Changes from Survey Responses 8

1 Spring 2017

Webserver

1 Abstract

A frequent obstacle encountered by CUAUV electrical and mechanical sub-
team members is the need to control the sub or gain access to its various
statuses but not being able to do so without the help of a software member.
Our current system for driving the sub and performing tests involves the
knowledge and execution of terminal commands that are often too involved
and unfamiliar for non-software members to execute. Last semester, Angela
Yang (aqy2) and Danny Qiu (dq29) began the implementation of a unified
webserver that will combine the features of past webserver implementations
and create a lasting resource for the team as a whole.

This semester I joined Angela and Danny in further developing this new
webserver by using React that will solve the aforementioned obstacles and
overcome complexity with extremely coherent and user-friendly features.
Due to my limited knowledge of React, the bulk of my semester was dedi-
cated to learning React and researching its most effective styles of implemen-
tation. This documentation will focus on the understanding I have gained
and the React features I was able to implement.

Figure 1: Current control helm that software members use to control the
sub and access its various statuses.

2 Spring 2017

Webserver

2 Goals

The CUAUV Webserver is a new team-wide applicable tool that aims to
fulfill the following goals:

• Be a user-friendly resource for all subteam members to perform tasks
including:

– Accessing the primary statuses of the sub, that have previously
been accessed solely through the control helm (see Figure 1).

– Driving the sub through GUI components and through keyboard
commands that parallel current control helm keyboard commands
(e.g. Forward, Increase Depth, Zero, Soft-kill, etc.).

– Running tests on the sub, including Syscheck, Thruster Tests,
and Actuator Tests.

– Viewing the values of all AUV Shared Memory System (SHM)
variables.

• Attain the simplicity and coherence to be fully adopted by non-software
members for long-term use.

• Be a lasting resource for CUAUV that will be continually maintained
and improved to grow with the increasing functionality of each year’s
subs and the expanding software stack. This will entail semesterly
design reviews and updates that will take into account functionality
input from across subteams.

3 Previous Implementations

“This web GUI has been in the works by various members over the past few
years, with each iteration bringing a different flavor of a webserver. However,
with recent modifications of the code base, multiple versions of webservers
have popped up, each with a specialized usage. A legacy webserver still
exists in the code base as well as a minimal webserver built by Zander Bolgar
(asb322) last year. There also exists a vision webserver used to run the vision
GUI. This project aims to bring all the webservers together, so that only a
single webserver needs to be run to provide all the necessary functionality.”
- Danny Qiu (dq29), Fall 2016 Unified Webserver Documentation

3 Spring 2017

Webserver

4 Design: Why React?

The first task we took on this semester was learning how to implement the
JavaScript library React.js. This new library, developed by Facebook engi-
neers, is becoming increasingly popular for its functional and reactive power.
We chose to incorporate React for its speed, modularity, and scalability.

4.1 Speed

An important feature of the webserver, is its ability to update the subs’
numerous statuses in real time. Without React, DOM manipulations are
not very fast. The DOM, Document Object Model, is a representation of a
webpage that can be changed using a scripting language; we use JavaScript.
While we can’t speed up DOM manipulation itself, we can use React to
only update aspects of the DOM that actually change. To do this, React
uses what is called the virtual DOM, a virtual representation of every DOM
object that is much faster to update. Now, when React updates the DOM
it first updates the entire virtual DOM, compares the virtual DOM to the
previous version of itself and then updates only the changed aspects in the
real DOM. This process is what makes React faster than other frameworks
and is what will allow the webserver to update more quickly when there are
only minimal changes in the extensive number of statuses and variables.

4.2 Modularity

React code is composed of components: small, reusable sections of code.
React’s component based structure makes it easy to reuse code by simply
referencing a component that’s already been created. Not only does this
improve development efficiency, but also maintainability: updating a single
root component updates every file that uses it!

4.3 Scalability

React implements a heuristic, constant time algorithm for updating the
DOM and changing states that maintains its time efficiency even as an
application grows. This will be even more applicable to our webserver as
advancements in the sub lead to more variables and more data.

4 Spring 2017

Webserver

5 Implementation

This section will describe the unique process of implementing components
in React. I will use the implementation of a SHM variable search bar to
explain these basic steps.

5.1 Components

As mentioned previously, React is composed of components. These com-
ponents are essentially JavaScript functions that take in parameters called
props and return elements to be displayed by the render method. The
render method tells React what you want rendered and React manipulates
the DOM to reflect this description. In developing the webserver we use
JSX, a JavaScript syntax extension, that allows us to easily write React
elements for React to render. React elements are JavaScript objects that
can be stored as variables in JSX. Furthermore, any piece of JavaScript code
may be inserted into JSX by simply enclosing it in curly braces. The first
step in implementing the SHM search bar was to add a search bar element
to the render function of the exported class SHM.

5.2 Props and State

Although React components take in props, these props should never be
manipulated by the component. Since components cannot change their in-
puts (props) they use the concept of state to manipulate their output. The
second step in adding the search bar was to add a state variable in the SHM

class constructor to store the initial value of the search. This state vari-
able is then passed, as a prop called query, into the SHMGroupList compo-
nent that is called by the SHM class. The SHMGroupList class then accesses
this value by referencing this.props.query. Since the render function of
SHMGroupList generates which SHM groups are rendered, I added a condi-
tional using JavaScript that filters out SHM group names not containing a
sub-string of the query entered.

5.3 Handlers

In order for the rendered list of SHM groups to change when the user types a
query, our React code must use an event handler. An event handler is often
a function within a class that handles changes in the application’s state. In
this case, I implemented a handleQueryUpdate function that takes in the

5 Spring 2017

Webserver

parameter e, for event. This handler will update the state variable query

to be the value inputted by the user into the search bar.

5.4 Style

This final step, unrelated to React, entails manipulating the style of the
new search bar to reflect the rest of the webserver. I completed this step by
adding the Bootstrap class form-control to the div search component in
the shm.jsx file and then updating the cuauv.css file for additional style
improvements. Figure 2 illustrates the final result.

Figure 2: Screenshot of the current Search bar filtering based on the query
“nav”

5.5 Keyboard Commands

Since the webserver was meant to be a tool for all team members, we wanted
software members to retain the familiar control-helm capabilities of driving
the sub through keyboard commands. This will also be a more intuitive fea-
ture for other subteam members to become accustomed to. These keyboard
shortcuts are keys on the computer that mirror buttons on the webserver
drive page. This feature was implemented using keycode values obtained
from implementing the JavaScript keydown library in the button component
classes.

6 Spring 2017

Webserver

6 Results

So far the webserver has been a success! In our recent presentation to the
entire team we received positive feedback about the project and our execu-
tion seems to be at a sufficiently comprehensible level. Since the webserver
was just released for team-wide usage, the true test of its success will be
this coming summer when we hope the other subteams will fully adopt and
utilize all of its features. In addition to our recent presentation where we
accepted preliminary feedback, I also created a Google form, depicted in Fig-
ure 3, to act as a long term resource for all CUAUV members to give Danny,
Angela, and I feedback, requests, and new ideas for future advancements in
the webserver.

Figure 3: Screenshot of the Google form

7 Spring 2017

Webserver

7 Future Improvements

The following improvements are focused on advancing front-end functional-
ity. See the Spring 2017 Documentation of Danny Qiu (dq29) for additional
information about future back-end improvements.

7.1 Additional Features

• Fully incorporated Vision GUI that will allow the user to view output
from the subs’ cameras as they drive

• Mobile touch version of the Drive page where the user can control the
sub through intuitive touch manipulations.

• The ability to change SHM variables directly on the webserver SHM
page: currently they are available for view only. In addition, the user
should be able to search for subsections of SHM groups.

7.2 Suggested Changes from Survey Responses

• Move the Zero Desires button from its location between the “Left”
and “Right” navigation buttons, in order to reduce risk of accidental
clicking.

• A key for keyboard shortcuts, although software members are very
familiar with these, other subteam members need a resource to get
accustomed to driving the sub in this efficient manner.

• A status feature that shows the number of other team members that
are currently accessing the webserver, specifically to avoid conflicting
demands if multiple members try to drive the sub at one time.

8 Spring 2017

	Abstract
	Goals
	Previous Implementations
	Design: Why React?
	Speed
	Modularity
	Scalability

	Implementation
	Components
	Props and State
	Handlers
	Style
	Keyboard Commands

	Results
	Future Improvements
	Additional Features
	Suggested Changes from Survey Responses

