
Cornell University
Autonomous Underwater Vehicle

Fall 2017

Positional Search

Semester Review

Noel Picinich (nmp53)

December 3, 2017



Positional Search

Contents

1 Abstract 2

2 Goals 3
2.1 Goals for the Fall 2017 semester . . . . . . . . . . . . . . . . . 3
2.2 Milestones for the Fall 2017 semester . . . . . . . . . . . . . . 3

3 Previous Implementations 3

4 Design 4
4.1 Hash Table Approach . . . . . . . . . . . . . . . . . . . . . . 4
4.2 Search Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5 Implementation 5
5.1 Search Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.2 Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.3 Downward Search . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.4 Pipe Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6 Results 7

7 Future Improvements 7

1 Fall 2017



Positional Search

1 Abstract

The Positional Search project is an approach to locating a mission element
that has not been seen yet. This implementation will standardize how we
search for specific objects in each mission and store basic information about
if and where an object was seen, thus, preventing the sub from restarting a
hard coded search if the object is lost for a frame. This project will exist
in the mission framework, with a specific search approach for each mission
element in the competition.

This framework will allow software members, when writing missions, to
create a specific search from the positional search framework that will locate
the mission element for the respective mission and store a grid-like repre-
sentation of space holding information about whether the mission element
was seen at any given location. The dimensions of the cubes of space that
compose this grid are defined by the user, allowing for smaller or larger
search increments. In the long-term, this grid will also give priorities (as
probabilities) to each cube in space, and the path traversed will be dictated
by searching cubes with a greater probability of having a view of the mission
element. This paper will focus on the initial implementation of this project
which aims to be a functional search for the pipe mission element.

2 Fall 2017



Positional Search

2 Goals

The primary goal of the positional search project is to implement a frame-
work for standardizing how the sub searches for mission elements at the
beginning of a mission. This framework, in full execution, will execute a
more efficient search by following a search path that prioritizes the region
of space with the highest probability of containing the desired mission ele-
ment. Due to the specificity of each element search and the extensive testing
required, this project will stretch into next semester as well.

2.1 Goals for the Fall 2017 semester

• Define and implement the structure of the Positional Search framework

• Produce a functional Downward Search class for the Pipes mission

• Test and iterate the Pipe Search class in the simulator and in the pool

2.2 Milestones for the Fall 2017 semester

• Research searching algorithms

• Define what information the sub has about its velocity, heading, etc.
and find a way to convert these values into a meaningful position

• Determine how to record and store information about an object when
it is in sight

• Implement an efficient algorithm for the sub to search for a task, given
the information obtained since the start of the mission.

• Test in the simulator and pool and make improvements

3 Previous Implementations

Since our software stack has not previously had a positional search frame-
work, searching for mission elements was done by a series of hard-coded
movements and conditionals. The major downfall in this method is the
sub’s inability to recover sight of a mission element that was previously seen
when sight of the object is lost for a frame. The positional search framework
aims to ameliorate this problem by storing information about where in space
a specific mission element was searched for and whether or not it was seen
at such locations.

3 Fall 2017



Positional Search

4 Design

A high-level overview of the positional search framework is, given a mission
element keyword and an anticipated distance away, a search class for the
specific element will execute a specialized search for the element, while stor-
ing information about whether the object was seen in each division of space
searched.

4.1 Hash Table Approach

This information is stored in a hash table, a data structure chosen for its
accessibility speed. The keys for the hash table are Cube objects that rep-
resent divisions of space with dimensions defined by the unit attribute of
the Search Grid class. This unit variable is set to a default value of 1 meter
but can be changed by the user. Figure 1 shows the basic hierarchy of the
framework.

Figure 1: Depiction of the positional search framework design structure.

The hashcode that identifies the cube is the north, east, and depth values
that identify the cube’s position in space. These values are not the raw shm
values, rather, they are a transformation relative to the sub’s heading when
the search was initialized, converted to the unit attribute, and truncated.

4.2 Search Classes

The Downward Search and Forward Search are the parent classes that users
will call to create a search object. These classes create a specific search class
depending on the key word the user passes in. In the case that the “pipes”
keyword is specified, a Pipe Search object is created, which executes a search

4 Fall 2017



Positional Search

for the pipe mission element. Since the search classes subclass Task, another
framework often used in our missions, the Pipe Search class and other search
classes are structured to satisfy the Task framework.

5 Implementation

The following sections describe the classes that form the positional search
framework and how they fit together.

5.1 Search Grid

The search grid class stores a representation, in the form of a hash table,
of the three dimensional space the sub has searched by storing weather
the designated object has been seen in each cube of space with dimensions
corresponding to the value of the unit attribute, the key corresponding to the
box object that represents such cube of space, and the value corresponding
to whether or not the desired object was seen when the sub was in such
box. The Search Grid contains functions for determining whether a specific
cube has been visited, setting the value of a cube key in the hash table, and
calculating the cube that corresponds to a given position. Ultimately, the
search grid class stores the hash table and the means to update and access
it.

5.2 Cube

The cube class is a class nested in the search grid class to define the divisions
of space that act as keys in the search grid hash table. As stated in the design
section, the cube class redefines raw position values by transforming and
converting them into integers that identify the cube of space relative to the
subs heading and position when the search began. This class also contains
functions to determine whether a given position lies within its boundaries
and to return the cube object a specified distance away.

5 Fall 2017



Positional Search

5.3 Downward Search

Downward search is the class called by the user on incorporation of the
positional search framework. This class handles which search class to call
given it’s corresponding key word (see Figure 2).

Figure 2: Depiction of how Downward Search handles keywords.

Additionally, since the first step in every downward search is to travel the
distance the mission element is anticipated to be from the sub, the downward
search class executes this movement. On creation of a downward search
object, a search grid object is also created, allowing the user to reference
this attribute for the information stored in its hash table.

5.4 Pipe Search

Pipe search executes the motions to search for the pipe mission element. The
search approach is to spiral out from the location with greatest probability
of having the mission element. The sub does this by retrieving the cube
one unit ahead and, if this cube has not been visited, moves to this cube
and turns right, otherwise, turns left. After moving to a new cube, the sub
checks for the pipe and if the pipe is found, terminates the search. In order
to check if the pipe is in sight, the pipe search class utilizes a helper function,
is pipe found, which returns true if the pipe results heuristic score is above
zero.

6 Fall 2017



Positional Search

6 Results

My work this semester has produced the basic functionality for a framework
that will greatly improve the mission writing process and the efficiency of
how the sub searches for mission elements. While still in its early stages, the
positional search framework outlines a clear vision for how the remaining
mission element search classes will be implemented, and the approach to
storing information and representing space in a meaningful way has been
implemented, tested, and iterated. As described in the future improvements
section, there are vital troubleshooting and pool testing to be done before
the framework can be reliably incorporated into our missions.

Figure 3: Progress report of semester goals.

7 Future Improvements

As previously stated, this semester focused on a high level implementation
of the positional search framework, with a focus on the search class of the
pipe mission element. In coming semesters, I plan to implement searches for
the remaining mission elements, as well as incorporating probabilities and
searching algorithms customized for a given mission element. Furthermore,
the current iteration is yet to be tested in the pool, which must be a heavy
focus for the framework to be a reliable resource. The lack of pool testing
leaves major improvements to be made in the aspect of trouble shooting,
that is, handling the events where an object is not found or there is a false
positive.

7 Fall 2017


	Abstract
	Goals
	Goals for the Fall 2017 semester
	Milestones for the Fall 2017 semester

	Previous Implementations
	Design
	Hash Table Approach
	Search Classes

	Implementation
	Search Grid
	Cube
	Downward Search
	Pipe Search

	Results
	Future Improvements

